Thermal energy storage of molten salt –based nanofluid containing nano-encapsulated metal alloy phase change materials
نویسندگان
چکیده
منابع مشابه
Characteristics of phase-change materials containing oxide nano-additives for thermal storage
In this study, the authors report the production of nanocomposite-enhanced phase-change materials (NEPCMs) using the direct-synthesis method by mixing paraffin with alumina (Al2O3), titania (TiO2), silica (SiO2), and zinc oxide (ZnO) as the experimental samples. Al2O3, TiO2, SiO2, and ZnO were dispersed into three concentrations of 1.0, 2.0, and 3.0 wt.%. Through heat conduction and differentia...
متن کاملEffect of Using Nano Encapsulated Phase Change Material on Thermal Performance of Micro Heat Sink
The aim of this paper is to enhance thermal performance of a microchannel heat sink by using nanoencapsulated phase change material (NEPCM) slurry as a cooling fluid instead of pure fluid. A threedimensional model of a circular channel using water slurry of NEPCM was developed. The results show a significant reduction in the mean fluid temperature along the channel and heat sink wall temperatu...
متن کاملEnhanced performance and interfacial investigation of mineral-based composite phase change materials for thermal energy storage
A novel mineral-based composite phase change materials (PCMs) was prepared via vacuum impregnation method assisted with microwave-acid treatment of the graphite (G) and bentonite (B) mixture. Graphite and microwave-acid treated bentonite mixture (GBm) had more loading capacity and higher crystallinity of stearic acid (SA) in the SA/GBm composite. The SA/GBm composite showed an enhanced thermal ...
متن کاملMicroencapsulation of Metal-based Phase Change Material for High-temperature Thermal Energy Storage
Latent heat storage using alloys as phase change materials (PCMs) is an attractive option for high-temperature thermal energy storage. Encapsulation of these PCMs is essential for their successful use. However, so far, technology for producing microencapsulated PCMs (MEPCMs) that can be used above 500°C has not been established. Therefore, in this study, we developed Al-Si alloy microsphere MEP...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Energy
سال: 2019
ISSN: 0360-5442
DOI: 10.1016/j.energy.2018.11.037